
NOTATION 

Cx, drag coefficient for a particle; Dp, particle diameter; gi, components of the acceleration g due to 
gravity acting on a particle in the direction of jet flow (gi = g sin ~) and in the direction normal to it (gi = g- 
cos~ ~); V'~:,nu~ V'~i~'s?~ fluctuation components of the velocltms" ' of the particles and gas, respectively, at the end 
oi a mole~formation; Vfi, free-fall velocity of a particle; /u, mixing length; rap, particle mass; tp, length of 
time of particle-mole interaction; V' ~, V '~-, positive and negative fluctuation velocities of particles and of pl i 
the gas respectively, with the components~' • u' • v' J:, v' ~, k = V'~0i/V~..; V'~., relative velocity of the gas; 
~, jet  inclination angle re la t ive  to the ear th  s surgface; fl, emp~rmal  constant;  6u, 54,  jet boundaries  in t e r m s  
of veloci ty  and concentrat ion,  respec t ive ly ;  ~u = Y/6u,  d imens ion less  veloci ty  ordinate;  ~ = y / 5  m d imen-  
s ionless  concentrat ion ordinate;  ~4, admixture  concentrat ion;  u m,  n m,  veloci ty  and the concentrat ion of the 
admixture  at the jet  ax is ,  respec t ive ly ;  pg, dynamic v iscos i ty  of the gas; Ps, Pg, densi t ies  of the par t ic le  m a -  
te r ia l  and of the gas ,  respec t ive ly ;  7g, ~-p, shear ing  s t r e s s e s  in the gas and in the "gas" of pa r t i c l e s ,  r e s p e c -  
t ively; and Tin, T0, shear ing  s t r e s s e s  in the mix ture  and in pure  gas ,  respec t ive ly .  
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The principles of an algorithm are formulated for a numerical solution of problems of one- 

dimensional flow in nozzles with passage through a singularity. The results of calculations 

are compared with experimental data. 

In engineering practice one often encounters problems involving the calculation of flow parameters for 
channels of variable cross section. In the simplest case this would be the flow of an ideal gas without friction 
and heat transfer. More complex problems include those involving the flow of a real gas with friction at the 
walls and with heat transfer, with expansion of two-phase or multiphase media accompanied by interphase in- 
teractions, with motion of multicomponent mixtures accompanied by chemical reactions, etc. 

According to an earlier study [i], all these problems can be classified into forward and reverse ones. 

The latter are widely encountered in numerical analysis of the motion of various media through nozzles, in- 
asmuch as here the solution does not have a singularity. In the analysis of flow through channels of a given 
geometry (so-called forward problem) there arise difficulties due to the fact that the solution contains a singu- 
larity of the saddle kind. It is not possible to obtain a continuous solution for critical flow and, therefore, 
special methods are used allowing the singularity to be taken out. Such methods are replacement of the steady- 
state problem with the transient one (method of stabilization), replacement of the forward problem in the vici- 
nity of the critical point with the reverse one, and other methods. Such approaches have already been the- 

roughly surveyed [i, 2]. 
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Here a method will be described which yields a continuous solution to the forward problem for the criti- 

cal flow of a medium. 

The simplest case with an already known analytical solution has been selected as the model (test case), 

since both the problem itself and the algorithm of its solution retain their character whether simple cases of 

the flow of an ideal gas or the flow of media with intricate compositions and with interactions of phases is 

considered. 

The steady motion of an ideal gas without friction through a channel of variable cross section is described 

by a system of equations where the equation of motion can be expressed as a differential relation [3] between 

the relative velocity X = W/~cr and the area of the channel cross section F(z) 

k--  1 ~ 2  1 (1) 
1 d~, 1 k -~- i  dg 

dz F (z) ~2 __ 1 dz 

The results of numerical integration of Eq. (i) by the methods of Milne, Adams, Runge-Kutta, Hemming, 

and Euler respectively have been compared [3] with its known exact solution. The problem was solved on a too- 

del BESM-6 high-speed computer, with the critical mode of flow extracted by the "shooting" method. 

tions were classified as follows: 

The solu- 

~ 1  at z<zmi~ ,  (2) 

Z < I  at z o ~ . z ~ L ,  (3) 

~ 1  at z m m ~ z ~ L .  (4) 

Condition (2) corresponds to solutions which have no physical significance, since it is well known that 

transition through the sound barrier cannot possibly take place in a narrowing channel. Condition (3) governs 

subsonic flow throughout the entire channel length, and condition (4) corresponds to critical flow of a medium 

in a DeLaval nozzle. 

Values for the initial velocity k 0 were tried until the equalities X 2 - 1 = 0 and dF/dz = 0 would not be sa- 

tisfied simultaneously between cross sections F i -- Fmi n -< Fi+ I. With conditions (2)-(4) satisfied, moreover, 

only the Euler method yields the entire integral curve. The integration formulas according to Milne, Adams, 

Runge-Kutta~ and Hemming yield large rounding errors and oscillating solutions near the critical point. Oscil- 

lating solutions make it impossible to select the integral curve on the basis of conditions (2)-(4) even in such a 

simple case. This explains why all attempts to use the Hunge-Kutta method for obtaining a continuous solution 

to the forward problem have so far been unsuccessful [i, 2]. 

Satisfactory results can be obtained by the Euler method, even though it is less accurate than the Runge- 

Kutta and other methods. Its algorithm Of the solution is constructed so that Xcr = 1 is always (boundary con- 

dition) at the critical point. The only source of inaccuracy here is the indeterminacy of the location of the cri- 

tical point within the computation interval and, accordingly, the error of calculation is maximum far from the 

singularity, i.e., at the channel entrance and exit sections. In our calculations with a 0.01 step this error did 

not exceed 4.10-2-4 �9 10-3%. 

As the problem becomes more complex the fundamental system of equations will be more unwieldy and 

contain a larger number of differential equations. 

The solution of such problems can be approached in two ways. Both involve transformation of all equa- 

tions describing the process to differential ones. The resulting system of equations will be linear with respect 

to the derivatives of the thermodynamic quantities and the latter can be easily determined. The solution of this 

system is then based on methods of numerical integration for determining all thermodynamic quantities at the 

successive sections in the first case and only a part of them in the second case. The number of functions to be 

determined from the derivatives must, moreover, not exceed the number of the initial differential equations. 

The remaining unknowns are calculated by any iteration method applicable to a system of nonlinear algebraic 
equations (equations of coupling). It is quite obvious that the latter method entails a completely conservative 

scheme, while the scheme according to the first method cannot be regarded as a conservative one on account 

of the errors building up in the computation process [4]. 

For constructing an algorithm according to which more complex problems can be solved, we transform 

conditions (2)-(4) to 
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Fig. i. Pressure distribution of the 

nozzle length: 1-6) x 0 = 0.3; i) ~0 = 

11.68 #m; 2) 40 = 10.48 #m; 3) 40 = 

10.43 gm; 4) 40 = 10.42 pro; 5) ~0 = 

10.38 #m; 6) 40 = 9.97 pro; 7) x 0 = 0.78 

and ~0 = 82.01 pro; solid lines) calcula- 

tions; dots) experimental data [9]. 

sign (deti) v~: sign (deti_~), 
sign (h~,j) = sign (A,_i,j); 

sign (deti) = sign (deti_i); 

sign (det~) :# sign (det~_i), 
sign (Ai,j) v~ sign (Ai_t,j). 

(2a) 

(3a) 

(4a) 

Here det denotes the principal determinant of the system of differential equations, its elements being the 

coefficients of the derivatives of the unknown functions, and Aj denotes the determinant which results from a 

replacement of the column of coefficients of the derivatives of the j-th quantity with the column of free terms. 

Subscript i refers to the computation step. 

The conditions in their new form (2a)-(4a) are valid for problems of any degree of complexity. Condi- 

tion (4a) is a universal one, moreover, inasmuch as it accounts for passage through the singularity of the solu- 

tion and thus makes determining the location of the critical section as well as the values of the critical quanti- 

ties possible. 

We note here that combining the Runge-Kutta method and the Euler method for follow-through calcula: 

tions where the solution has saddle-point singularities is difficult, because in more intricate problems the 

location of a singularity is not a priori known. 

The effectiveness of the proposed methods of solution was checked on the earlier model problem. It has 

been discovered that, unless the conditions of conservatism are satisfied, none of the methods of numerical in- 

tegration, including the Euler method, will yield the parameters of critical flow. As to the second (composite) 

method, it yields exactly the same result which has been obtained by solving Eq. (i). It is to be noted that this 

composite method contains a certain indeterminacy with regard to the selection of parameters whose values are 

calculated by numerical integration. The accuracy and the stability of the solution depend on how successfully 

those parameters have been selected. It is difficult to give beforehand any recommendations facilitating this 

selection, all depends on the kind of equations formulating the problem and on the experience of the person mak- 

ing the calculations. 

Noteworthy is still another feature of the proposed method of calculation, a feature which distinguishes it 

from other methods described in the technical literature. As the form of the conditions (2a)-(4a) indicates, 
they are based entirely on the system of equations which describes the flow process. Their use does not re- 
quire any additional stipulations about the velocity of sound in the given medium. The principal determinant det 
of the system is a quantity proportional to (M 2 -I) in the case of homogeneous media and can be tentatively 

put in the same form also for heterogeneous media [5]. When the Mach number (equal to the ratio of the velo- 

city of the carrier medium to some acoustic velocity) is introduced according to any physical theory which 
defines that velocity, then conditions (4a) can become inconsistent and no solution to the problem will in this 
case be obtained. It is a simultaneous change of the signs of all quantities in the determinants which serves 

as a universal indicator of passage of the solution of the system of equations through its singularity. 
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The principles which have been outlined here can serve as the basis of an algorithm of solution for va- 
rious problems such as expansion of an ideal or real gas, flow of a suspension of solid particles in an ideal 
gas [6], or motion of a vapor-liquid medium through variable-section channels [7, 8]. 

We show here the solution to the problem of flow of disperse wet steam through a DeLaval nozzle. The 

system of equations is in this case more unwieldy and contains 42 equations, four of them differential ones. It 
consists of laws of conservation applied to the mixture as a whole as well as to the individual phases, condi- 
tions of heterogeneous equilibrium, and relations characterizing the thermodynamic properties and the transfer 
properties under limiting conditions and away from them. The results of calculations shown in Fig. 1 are com- 
pared here with those of an earlier study [9]. Curves I-4 depict the modes of subcritical flow which satisfy 

condition (3a). Curve 7 depicts the critical flow when the critical section coincides with the narrowest nozzle 
section (indicated by a dash line). The discrepancy between values according to the theoretical curve 7 and ex- 
perimental data for the expanding nozzle segment can be explained by spontaneous phase transitions observed 
in experiments but not included in the mathematical description. The bifurcation of the theoretical curve for 

the contracting nozzle segment corresponds to different initial vapor mass fractions in the stream - x 0 = 0.3 
corresponds to the right-hand branch and x 0 = 0.78 corresponds to the left-hand branch. 

Finally, curves 5 and 6 depict modes of flow without physical significance for the given nozzle according 
to conditions (2a). All the curves in Fig. 1 have been plotted with the input data fully conforming to the experi- 

mental conditions. The mean dimension of water droplets 40 at the nozzle entrance was the varied parameter. 

This example demonstrates not only that forward problems of critical flow in nozzles can, in principle, 
be solved but also that even the simplified one-dimensional formulation of such a problem will yield a close 
agreement between calculated and measured values. 

NOTATION 

p, pressure; w, velocity; F, area; a, acoustic velocity; 4, mean radius of droplets; M, Mach number; 
k, adiabatic exponent; X, dimensionless velocity; L, channel length; z, longitudinal coordinate; x, true vapor 
mass fraction. Subscripts: 0, entrance section; cr, critical section; min, the narrowest section; and L, exit 
section. 
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